UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi 113 Hessert Center Tel: 631-5736 Email:atassi@nd.edu AME-60639 Advanced Aerodynamics

Homework 6

The tapered symmetric wing shown below is placed at an angle of attack $\alpha = 5^{\circ}$ to a free stream velocity of 100m/s. The chord length is given in meters by

$$c(y) = 3 - \frac{y}{(b/2)}$$

where b=18m is the wing span. The wing is designed to fly at elevations where the air density $\rho=1.20kg/m^3$ and the speed of sound is about 330 m/s. The cross-section of the wing at the root is a NACA 4412 profile and changes linearly to a NACA 0012 at the tip.

- 1. Explain why the flow around the wing may be considered to be incompressible.
- 2. Although we want to calculate the characteristics of the finite wing, it is interesting to examine the characteristics of each cross-section as the profile of a two-dimensional infinite-span wing. Use the thin airfoil theory to calculate the two-dimensional characteristics such as the circulation Γ , the angle of zero-lift α_{L_0} , and the aerodynamic coefficients: c_{ℓ} , $c_{m,le}$, x_{cp} and c_{mac} , compare and plot their variations from root to tip. Compare the pressure distributions obtained from the two methods at three locations of the wing: root, middle of root-tip, and tip. Comment on the results.
- 3. Check the relationship between the angle of zero-lift, α_{L_0} and the sectional profile camber, m.
- 4. The finite wing theory introduces the new variable $y = -(b/2)cos\theta$, and give the expression

$$\alpha - \alpha_{L_0}(\theta) = \frac{2b}{\pi c(\theta)} \sum_{1}^{N} A_n sinn\theta + \sum_{1}^{N} n A_n \frac{sinn\theta}{sin\theta}.$$

Determine how many collocation points you need to calculate the A_n 's with a reasonable accuracy. Compare the results with the following choice: two points, one at the centerline y = 0 ($\theta = \pi/2$) and the other at $y = 0.3535b(\theta = 3\pi/4)$.

- 5. Calculate the lift coefficient, C_L , the induced angle of attack, α_i , along the span, and the induced drag coefficient, $C_{D,i}$. Compare the results with those obtained from two-dimensional methods.
- 6. Compare C_L , $C_{D,i}$ and α_i with those of an elliptical wing with the same span and chord length at the root.

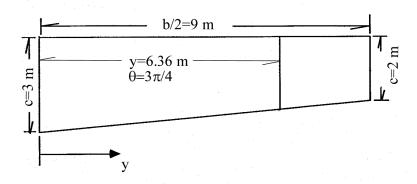


Figure 1: Tapered Wing Geometry